Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 87, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581061

RESUMO

BACKGROUND: DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS: Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS: Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.


Assuntos
Metilação de DNA , Pyrus , Humanos , Frutas/genética , Frutas/metabolismo , Pyrus/genética , Domesticação , Epigênese Genética , Proteínas de Ligação ao Cálcio/genética , Transativadores/genética
2.
Environ Sci Pollut Res Int ; 30(33): 80591-80601, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37296254

RESUMO

Coal spontaneous combustion (CSC) is a global disaster and detrimental to the ecological environment. This study aims to better apply environmentally friendly dissolvable tiny-foam extinguisher (DTE) to CSC and look further into the inhibition mechanism. Thermogravimetric analysis and differential scanning calorimetry (TG-DSC) were employed to test the oxidation properties of coal samples treated with DTE, NaCl, MgCl2, and CaCl2 inhibitors, and the reaction mechanisms and kinetic parameters in the high-temperature stage of coal oxidation were determined. The results revealed that the inhibition of the four inhibitors was similar in the initial period of the coal oxidation, DTE increased the cracking temperature of the coal by 37 °C, mass loss was a minimum when reaching the ignition temperature, and inhibition was better than the other inhibitors at the low temperature. DTE had higher thermal stability and played a stable role in suppression at the high temperature, while chlorine salt inhibitors promoted the oxidative exothermic reaction. DTE coal sample absorbed forty times more heat during the endothermic stage than raw coal, ten times more than MgCl2, and released a minimum of heat. In the decomposition and combustion stages, the reaction mechanism of coal and oxygen conformed to the three-dimensional diffusion Z.-L.-T. equation, and the apparent activation energy of the DTE-treated coal sample was about 40 kJ/mol higher than raw coal.


Assuntos
Cloro , Combustão Espontânea , Cloro/farmacologia , Cloro/análise , Sais , Carvão Mineral/análise , Temperatura , Halogênios
3.
Plant J ; 114(1): 124-141, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710644

RESUMO

Soluble sugars play an important role in plant growth, development and fruit quality. Pear fruits have demonstrated a considerable improvement in sugar quality during their long history of selection. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit sugar content as a result of selection by horticulturists. Here, we identified a calcium-dependent protein kinase (PbCPK28), which is located on LG15 and is present within a selective sweep region, thus linked to the quantitative trait loci for soluble solids. Association analysis indicates that a single nucleotide polymorphism-13 variation (SNP13T/C ) in the PbCPK28 regulatory region led to fructose content diversity in pear. Elevated expression of PbCPK28 resulted in significantly increased fructose levels in pear fruits. Furthermore, PbCPK28 interacts with and phosphorylates PbTST4, a proton antiporter, thereby coupling the sugar import into the vacuole with proton export. We demonstrated that residues S277 and S314 of PbTST4 are crucial for its function. Additionally, PbCPK28 interacts with and phosphorylates the vacuolar hydrogen proton pump PbVHA-A1, which could provide proton motive forces for PbTST4. We also found that the T11 and Y120 phosphorylation sites in PbVHA-A1 are essential for its function. Evolution analysis and yeast-two-hybrid results support that the CPK-TST/CPK-VHA-A regulatory network is highly conserved in plants, especially the corresponding phosphorylation sites. Together, our work identifies an agriculturally important natural variation and an important regulatory network, allowing genetic improvement of fruit sugar contents in pears through modulation of PbCPK28 expression and phosphorylation of PbTST4 and PbVHA-A1.


Assuntos
Pyrus , Açúcares , Açúcares/metabolismo , Pyrus/metabolismo , Prótons , Regiões Promotoras Genéticas/genética , Frutose/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
BMC Biol ; 20(1): 215, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183077

RESUMO

BACKGROUND: Although the wild relatives of pear originated in southwest China, this fruit crop was independently domesticated and improved in Asia and Europe, and there are major phenotypic differences (e.g., maturity and fruit firmness) between Asian and European pears.  RESULTS: In this study, we examined the genomes of 113 diverse pear accessions using an identity-by-descent (IBD) approach to investigate how historical gene flow has shaped fruit firmness traits in Asian and European pears. We found a 3-Mbp IBD-enriched region (IBD-ER) that has undergone "convergent domestication" in both the Asian and European pear lineages, and a genome-wide association study (GWAS) of fruit firmness phenotypes strongly implicated the TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55) locus within this 3-Mbp IBD-ER. Furthermore, we identified a tandem duplication that includes a 12-bp insertion located in the first exon of TIC55 that is uniquely present in Asian pears, and expression analysis showed that the pear TIC55 gene is highly expressed in Asian pear, while it is weakly or not expressed in European pear; this could contribute to the differences in fruit firmness between Asian and European pear fruits. CONCLUSIONS: Our findings provide insights into how pear fruit softening has been impacted during domestication, and we identified candidate genes associated with fruit softening that can contribute to the breeding and improvement of pear and other fruit crops.


Assuntos
Pyrus , Domesticação , Frutas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Pyrus/genética
5.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35031796

RESUMO

Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".

6.
Genome Biol ; 22(1): 313, 2021 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34776004

RESUMO

BACKGROUND: Stone cells in fruits of pear (Pyrus pyrifolia) negatively influence fruit quality because their lignified cell walls impart a coarse and granular texture to the fruit flesh. RESULTS: We generate RNA-seq data from the developing fruits of 206 pear cultivars with a wide range of stone cell contents and use a systems genetics approach to integrate co-expression networks and expression quantitative trait loci (eQTLs) to characterize the regulatory mechanisms controlling lignocellulose formation in the stone cells of pear fruits. Our data with a total of 35,897 expressed genes and 974,404 SNPs support the identification of seven stone cell formation modules and the detection of 139,515 eQTLs for 3229 genes in these modules. Focusing on regulatory factors and using a co-expression network comprising 39 structural genes, we identify PbrNSC as a candidate regulator of stone cell formation. We then verify the function of PbrNSC in regulating lignocellulose formation using both pear fruit and Arabidopsis plants and further show that PbrNSC can transcriptionally activate multiple target genes involved in secondary cell wall formation. CONCLUSIONS: This study generates a large resource for studying stone cell formation and provides insights into gene regulatory networks controlling the formation of stone cell and lignocellulose.


Assuntos
Metabolismo dos Carboidratos/genética , Frutas/genética , Lignina/biossíntese , Lignina/genética , Pyrus/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Proteínas de Plantas/genética , RNA-Seq , Transcriptoma
7.
BMC Plant Biol ; 21(1): 235, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039263

RESUMO

BACKGROUND: The plant U-box (PUB) proteins are a family of ubiquitin ligases (E3) enzymes that involved in diverse biological processes, as well as in responses to plant stress response. However, the characteristics and functional divergence of the PUB gene family have not yet been previously studied in the Chinese white pear (Pyrus bretschneideri). RESULTS: In the present study, we identified 62 PbrPUBs in Chinese white pear genome. Based on the phylogenetic relationship, 62 PUB genes were clustered into five groups. The results of conserved motif and gene structure analysis supported the classification phylogenetic tree. The PbrPUB genes were unevenly distribution on 17 pear chromosomes, chromosome 15 housed most member of PUB family, with eight PUB genes. Cis-acting element analysis indicated that PUB genes might participate in diverse biological processes, especially in the response to abiotic stresses. Based on RNA-data from 'Dangshansuli' at seven tissues, we found that PUB genes exhibited diverse of expression level in seven tissues, and qRT-PCR experiment further supported the reliable of RNA-Seq data. To identify candidate genes associated with resistance, we conducted qRT-PCR experiment the expression level of pear seed plant under four abiotic stresses, including: ABA, dehydration, salt and cold treatment. One candidate PUB gene associated with dehydration stress was selected to conduct further functional experiment. Subcellular localization revealed PbrPUB18 protein was located on cell nucleus. Furthermore, heterologous over-expression of PbrPUB18 in Arabidopsis indicated that the over-expression of PbrPUB18 could enhance resistance in drought treatment. In conclusions, we systematically identified the PUB genes in pear, and provided useful knowledge for functional identification of PUB genes in pear.


Assuntos
Família Multigênica , Pyrus/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Secas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/fisiologia , Estresse Fisiológico
8.
BMC Genomics ; 21(1): 809, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213380

RESUMO

BACKGROUND: The NBS disease-related gene family coordinates the inherent immune system in plants in response to pathogen infections. Previous studies have identified NBS-encoding genes in Pyrus bretschneideri ('Dangshansuli', an Asian pear) and Pyrus communis ('Bartlett', a European pear) genomes, but the patterns of genetic variation and selection pressure on these genes during pear domestication have remained unsolved. RESULTS: In this study, 338 and 412 NBS-encoding genes were identified from Asian and European pear genomes. This difference between the two pear species was the result of proximal duplications. About 15.79% orthologous gene pairs had Ka/Ks ratio more than one, indicating two pear species undergo strong positive selection after the divergence of Asian and European pear. We identified 21 and 15 NBS-encoding genes under fire blight and black spot disease-related QTL, respectively, suggesting their importance in disease resistance. Domestication caused decreased nucleotide diversity across NBS genes in Asian cultivars (cultivated 6.23E-03; wild 6.47E-03), but opposite trend (cultivated 6.48E-03; wild 5.91E-03) appeared in European pears. Many NBS-encoding coding regions showed Ka/Ks ratio of greater than 1, indicating the role of positive selection in shaping diversity of NBS-encoding genes in pear. Furthermore, we detected 295 and 122 significantly different SNPs between wild and domesticated accessions in Asian and European pear populations. Two NBS genes (Pbr025269.1 and Pbr019876.1) with significantly different SNPs showed >5x upregulation between wild and cultivated pear accessions, and > 2x upregulation in Pyrus calleryana after inoculation with Alternaria alternata. We propose that positively selected and significantly different SNPs of an NBS-encoding gene (Pbr025269.1) regulate gene expression differences in the wild and cultivated groups, which may affect resistance in pear against A. alternata. CONCLUSION: Proximal duplication mainly led to the different number of NBS-encoding genes in P. bretschneideri and P. communis genomes. The patterns of genetic diversity and positive selection pressure differed between Asian and European pear populations, most likely due to their independent domestication events. This analysis helps us understand the evolution, diversity, and selection pressure in the NBS-encoding gene family in Asian and European populations, and provides opportunities to study mechanisms of disease resistance in pear.


Assuntos
Pyrus , Alternaria , Domesticação , Evolução Molecular , Polimorfismo de Nucleotídeo Único , Pyrus/genética
9.
BMC Genomics ; 21(1): 644, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957912

RESUMO

BACKGROUND: The lateral organ boundaries domain (LBD) gene is a plant-specific transcription factor that plays a critical role in diverse biological processes. However, the evolution and functional divergence of the LBD gene family has not yet been characterized for the Chinese White Pear. RESULTS: In our study, a total of 60 PbrLBDs were identified in the pear genome. The PbrLBD gene family was divided into two classes based on gene structure and phylogenetic analysis: class I (53) and class II (7). Cis-acting element analysis results suggested that PbrLBDs may participate in various biological processes, such as flavonoid biosynthetic and stress response. Synteny analysis results indicated that segmental duplication played a key role in the expansion of the PbrLBD gene family. The mean Ks and 4DTv values showed that the PbrLBD gene family had undergone only one recent whole-genome duplication event occurring at 30-45 MYA. Purifying selection was a primary force during the PbrLBD gene family evolution process. Transcriptome data analysis revealed that 10 PbrLBDs were expressed in all six examined tissues, and 73.33% of members in the PbrLBD gene family were expressed in pear sepal. qRT-PCR was conducted to verify the expression levels of 11 PbrLBDs in these six tissues. Specifically, PbrLBD20, PbrLBD35 and PbrLBD53 genes were down-regulated when anthocyanin concentrations were high, whereas PbrLBD33 was significantly up-regulated in pear when anthocyanin concentrations were high. Furthermore, PbrLBD20, one of the candidate genes related to anthocyanins was localized in the nucleus. CONCLUSIONS: Our analysis provides valuable information for understanding the evolution of the PbrLBD gene family, and provides new insights into the regulation of pear pigment metabolism and lays a foundation for the future disclosure of the molecular mechanism of LBD gene regulating flavonoid metabolism.


Assuntos
Evolução Molecular , Proteínas de Plantas/genética , Pyrus/genética , Fatores de Transcrição/genética , Antocianinas/genética , Antocianinas/metabolismo , Duplicação Gênica , Família Multigênica
10.
Plant Physiol ; 180(1): 435-452, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30867332

RESUMO

Knowledge of the genetic changes that occurred during the domestication and improvement of perennial trees at the RNA level is limited. Here, we used RNA sequencing analysis to compare representative sets of wild, landrace, and improved accessions of pear (Pyrus pyrifolia) to gain insight into the genetic changes associated with domestication and improvement. A close population relationship and similar nucleotide diversity was observed between the wild and landrace groups, whereas the improved group had substantially reduced nucleotide diversity. A total of 11.13 Mb of genome sequence was identified as bearing the signature of selective sweeps that occurred during pear domestication, whereas a distinct and smaller set of genomic regions (4.04 Mb) was identified as being associated with subsequent improvement efforts. The expression diversity of selected genes exhibited a 20.89% reduction from the wild group to the landrace group, but a 23.13% recovery was observed from the landrace to the improved group, showing a distinctly different pattern with variation of sequence diversity. Module-trait association analysis identified 16 distinct coexpression modules, six of which were highly associated with important fruit traits. The candidate trait-linked differentially expressed genes associated with stone cell formation, fruit size, and sugar content were identified in the selected regions, and many of these could also be mapped to the previously reported quantitative trait loci. Thus, our study reveals the specific pattern of domestication and improvement of perennial trees at the transcriptome level, and provides valuable genetic sources of fruit traits that could contribute to pear breeding and improvement.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Pyrus/genética , Domesticação , Frutas/citologia , Perfilação da Expressão Gênica , Variação Genética , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Células Vegetais , Pyrus/citologia , Locos de Características Quantitativas , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...